

1

d and tempor

A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 ka

Xianyong Cao¹, Fang Tian¹, Andrei Andreev^{1,2}, Patricia M. Anderson³, Anatoly V.

5 Lozhkin⁴, Elena Bezrukova^{5,6}, Jian Ni⁷, Natalia Rudaya^{1,6}, Astrid Stobbe⁸, Mareike Wieczorek¹, Ulrike Herzschuh^{1,9,10}

¹Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Research Unit Potsdam, Telegrafenberg A43, Potsdam, 14473, Germany

²Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlevskaya 18, Kazan,
 420008, Russia

³Earth and Space Sciences and Quaternary Research Center, University of Washington, Seattle, WA 98185, USA

⁴North East Interdisciplinary Science Research Institute, Far East Branch Russian Academy of Sciences, Magadan, 685000, Russia

15 ⁵Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1a, Irkutsk, 664033, Russia

⁶Institute of Archeology and Ethnography, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva 17, Novosibirsk, 630090, Russia

⁷ College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua,

20 321004, China

 ⁸ Goethe University, Norbert-Wollheim-Platz 1, Frankfurt am Main, 60629, Germany
 ⁹Institute of Environmental Sciences and Geography, University of Potsdam, Karl-Liebknecht-Str. 24, Potsdam, 14476, Germany

¹⁰Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24, Potsdam,

25 14476, Germany

Correspondence to: Ulrike Herzschuh (Ulrike.Herzschuh@awi.de) and Xianyong Cao (Xianyong.Cao@awi.de; <u>xcao@itpcas.ac.cn</u>)

Abstract. Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that

- 30 was synthesized using 173 palynological records from Siberia and adjacent areas (northeast Asia, 50°-180°E and 42°-75°N). Pollen data were taxonomically harmonized, that is the original 437 taxa were transformed to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples) with age information for each sample. The
- 35 dataset has relatively few sites covering the last glacial period between 40 and 11.5 cal ka BP

2

(calibrated thousand years before present 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area except the central part of Siberia. Of the 173 pollen records, 81% of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10% were contributions of the original data gatherers, while a few were

5 digitized from publications. Most of the pollen records originate from peatlands (48%) and lake sediments (33%). Most of the records (83%) have ≥3 dates allowing the establishment of reliable chronologies. The dataset can be used for various purposes including pollen data mapping (example maps for *Larix* at selected time-slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at

10 <u>https://doi.pangaea.de/10.1594/PANGAEA.898616</u> (Cao et al., 2019).

1 Introduction

Continental or sub-continental pollen databases are essential in spatial reconstructions of former climates and past vegetation patterns of the terrestrial biosphere, and in interpreting their driving forces (Cao et al., 2013); they also provide data for use in palaeodata-model comparisons at a continental scale (Gaillard et

- 15 al., 2010; Trondman et al., 2015). Continental pollen databases from North America, Europe, Africa, and Latin America have been successfully established (Gajewski, 2008) and a fossil pollen dataset has been established for the eastern part of continental Asia (including China, Mongolia, south Siberia and parts of central Asia; Cao et al., 2013). These datasets have been used to infer the locations of glacial refugia and migrational pathways by pollen mapping (e.g. Magri, 2008; Cao et al., 2015) and to reconstruct biome or
- 20 land-cover (e.g. Ni et al., 2014; Trondman et al., 2015; Tian et al., 2016) and climates at broad spatial scales (e.g. Mauri et al., 2015; Marsicek et al., 2018).

Pollen records from Siberia have rather seldomly been included in global, Northern Hemisphere, or synthesis works (Marsicek et al., 2018), probably because (1) few records are available in open databases or (2) available data are not taxonomically harmonized and lack reliable chronologies. The few works

25 that made use of fossil pollen data collection for Siberia either present biome reconstructions (Binney et al. 2017; Tian et al., 2018) which do not require the taxonomic harmonization of the data, or restrict the analyses to a few times slices such as 18 ka, 6 ka and 0 ka (Tarasov et al., 1998, 2000; Bigelow et al., 2003).

3

Here we provide a new taxonomically harmonized and temporally standardized fossil pollen data set for Siberia and adjacent areas.

2 Dataset description

2.1 Data sources

- 5 We obtained 173 late Quaternary fossil pollen records (generally since 40 cal ka BP) from Siberia and surrounding areas (50°–180°E and 42°–75°N), from database sources and/or contributers, or by digitizing published pollen diagrams (Appendix A Table 1, and Cao et al. 2019 https://doi.pangaea.de/10.1594/PANGAEA.898614). 102 raw pollen count records were downloaded from the Global Pollen Database (GPD; http://www.ncdc.noaa.gov/paleo/gpd.html); 18 pollen count
- 10 (EPD; records were downloaded from the European Pollen Database http://www.europeanpollendatabase.net); 20 pollen records (16 sites have pollen count data, others with pollen percentages) were collected from PANGAEA (Data Publisher for Earth & Environmental Science, which also includes most pollen records found in GPD and EPD; https://www.pangaea.de); raw pollen count data of 17 sites were contributed directly by the data gatherers; and pollen percentages 15 for remaining 16 sites were digitized from the published pollen diagrams.

2.2 Data processing

Pollen standardization follows Cao et al. (2013), including homogenization of taxonomy at family or genus level generally (437 pollen names were combined into 106 taxa; Appendix A Table 2), re-calculation of pollen percentages on the basis of the total number of terrestrial pollen grains, and

- 20 re-establishment of age-depth models using Bayesian age-depth modeling ("Bacon" software; Blaauw and Christen, 2011). For the 20 pollen records without raw pollen counts, we set the terrestrial pollen sum based on the descriptions given in the original publications (approximate values or ranges for 16 records; e.g., it is more than 600 for the pollen record from Chernaya Gorka Palsa, and between 452 and 494 grains for Two-Yurts Lake. Pollen sums of 600 and 470, respectively, were assigned in these
- 25 two cases); and we set the pollen sum at 400 for the other 4 records because no information was provided in the publications. The "pollen counts" were then back-calculated using the pollen percentages and pollen sum. Finally, the pollen datasets are available with both count data and

4

percentage data in table format in EXCEL software (taxa vs. samples) with age and location information for each sample.

2.3 Data quality

The Siberia pollen dataset includes pollen count data and percentages from 173 pollen sampling sites

- 5 (Figure 1). Sites are distributed reasonably evenly in east and west Siberia, but geographic gaps still exist in the central part (90°–120°E and 55°–70°N), where no published pollen records exist. The dataset includes 83 pollen records from peat sediments, 57 records from lake sediments, 23 from fluvial sediments, 6 from coastal or marine sediments, 3 from palaeosol profiles, and one from palsa sediment (Appendix A Table 1). The peat and lake sediments generally have reliable chronologies and
- 10 high sampling resolutions of the pollen records. About 83% of the pollen records have ≥3 dates (~57% have ≥5 dates); 73% of the pollen records have sampling resolutions of <500 years/sample and only 14% sites with >1000 years/sample (Appendix A Table 1).

Within this dataset, 91% of the pollen records (157 sites) have raw pollen count data or percentages with complete pollen assemblages (Appendix A Table 1). Although there might be some rare pollen

15 taxa excluded from the published pollen diagrams (16 sites) that were digitized, these pollen taxa are likely of minor importance within the pollen assemblages. In addition, during digitizing we ensured that the sum of pollen percentages for each pollen assemblage was within 100±10%, to minimize artificially introduced errors.

The homogenization of taxonomy from 437 original taxa to 106 combined taxa reduces the taxonomic

20 resolution of the dataset, but the separation of pollen taxa into different plant traits will accurately reflect a detailed ecological signal. Nevertheless, we also append the original pollen names to the dataset, to ensure feasibility of future studies on various topics using these data.

The chronologies of most pollen records are based on a reasonable number of dates (mostly 14C; at least 3 dates per record). However, we also included pollen records from under-represented areas or

25 periods that do not meet this criterion. Furthermore, most of the pollen records cover only parts of the last 40 cal ka and comparatively few pollen records cover (parts of) the last glacial (i.e. >11 ka BP). We interpolated pollen abundances at 16 key time slices (40 ka, 25 ka, 15 ka, 13 ka, 11 ka, 10 ka, 9 ka, 8 ka, 7 ka, 6 ka, 5 ka, 4 ka, 3 ka, 1.5 ka and 0.5 ka) using the interp.dataset function in the R package rioja (Juggins, 2012) to produce pollen presence/absence maps for Larix as an example of the distribution of

5

available sites at the 16 key time slices (Figure 2). We also present boxplots for 14 major pollen taxa from all available sites at the 16 key time-slices (Figure 3), which illustrates the general temporal patterns.

3 Potential use of the Siberian fossil pollen data set

- 5 Fossil pollen data mapping can be used to reveal broad-scale spatial distributions over time, as Cao et al. (2015) demonstrate. In this paper, we present presence/absence maps for Larix as an example (Figure 2). Larix has extremely low pollen productivity (e.g. Niemeyer et al., 2015) that causes the under-representation of Larix in pollen compared to its coverage in the pollen source vegetation (Lisitsyna et al., 2011). Accordingly, Larix pollen is accepted as an indicator of the presence of Larix
- 10 locally (e.g. Lisitsyna et al., 2011). The pollen presence/absence maps for Larix (Figure 2) show a wide geographical range over the last 40,000 years, even during the Last Glacial Maximum, when there was very likely a relatively low density of larch. Our results generally confirm the distribution revealed by Larix macrofossil analysis (Binney et al., 2009). The larch distribution changes revealed by our pollen dataset exemplify the usability of the dataset for vegetation reconstruction.
- 15 The presented dataset has already been used for biome reconstruction (Tian et al., 2018), although an integration of this dataset into global or Northern Hemisphere-wide biomisation research is still pending. Pollen percentages in pollen assemblages do not directly reflect species abundance in the vegetation community because of different pollen productivity. Therefore, quantitative vegetation composition is modelled using pollen productivity estimates (e.g. Sugita et al., 2010; Trondman et al., 2015). Our pollen
- 20 dataset was recently used to reconstruct plant cover quantitatively using the REVEALS model to describe the compositional changes in space and time, which is more reliable than using pollen percentages directly (Cao et al., 2018).

Modern pollen data have been published from many sites in Siberia (e.g. Tarasov et al., 2007, 2011; Müller et al., 2010; Klemm et al., 2015). These modern pollen datasets can be used to investigate modern

25 pollen-climate relationships, and these modern relationships can be used to make quantitative climate reconstructions as has been done previously (e.g. Marsicek et al., 2018).

6

4 Conclusion

We present a taxonomically harmonized and temporally standardized fossil pollen dataset of 173 palynological records with counts and percentages from Siberia and adjacent areas (northeast Asia, $50^{\circ}-180^{\circ}E$ and $42^{\circ}-75^{\circ}N$).

5 Our open-access dataset is a key component that can help provide quantitative estimates of vegetation or climate which can be used to validate palaeosimulation results of general circulation models for the Northern Hemisphere.

5 Data availability

Three datasets are available at PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.898616, Cao et

10 al., 2019), including

(i) a data overview and a list of references (<u>https://doi.pangaea.de/10.1594/PANGAEA.898614</u>),
(ii) pollen counts (<u>https://doi.pangaea.de/10.1594/PANGAEA.898389</u>) and
(iii) pollen percentages (<u>https://doi.pangaea.de/10.1594/PANGAEA.898397</u>).

Appendices

15 Appendix A with Table 1 and Table 2

Author contributions. UH and XC designed the pollen dataset. XC and FT compiled the standardization for the dataset and wrote the draft. MW supported compiling the dataset overview. Other authors provided pollen data and all authors discussed the results and contributed to the final paper.

Acknowledgements

20 The authors would like to express their gratitude to all the palynologists who, either directly or indirectly, contributed their pollen records to the dataset or accessible databases. This data collection and research were supported by the German Research Foundation (DFG), Palmod project (German Ministry of Science and Education), and the GlacialLegacy project (consolidator grant of the European Research Council of UH, grant agreement No 772852).

7

References

Arctic Climate Impact Assessment: Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge, UK, Cambridge University Press, 2004.

Bigelow, N.H., Brubaker, L.B., Edwards, M.E., Harrison, S.P., Prentice, I.C., Anderson, P.M., Andreev,

- 5 A.A., Bartlein, P.J., Christensen, T.R., Cramer, W., Kaplan, J.O., Lozhkin, A.V., Matveyeva, N.V., Murray, D.F., McGuire, A.D., Razzhivin, V.Y., Ritchie, J.C., Smith, B., Walker, D.A., Gajewski, K., Wolf, V., Holmqvist, B.H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M.F.J. and Volkova, V.S.: Climate change and arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res., 108, DOI: 10.1029/2002JD002558, 2008.
- 10 Binney, H.A., Willis, K.J., Edwards, M.E., Bhagwat, S.A., Anderson, P.M., Andreev, A.A., Blaauw, M., Damblon, F., Haesaerts, P., Kienast, F., Kremenetski, K.V., Krivonogov, S.K., Lozhkin, A.V., MacDonald, G.M., Novenko, E.Y., Oksanen, P., Sapelko, T.V., Väliranta, M., Vazhenina, L.: The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quaternary Sci. Rev., 28, 2445–2464, DOI: 10.1016/j.quascirev.2009.04.016, 2009.
- 15 Binney, H., Edwards, M.E., Macias-Fauria, M., Lozhkin, A., Anderson, P., Kaplan, J.O., Andreev, A., Bezrukova, E., Blyakharchuk, T., Jankovsha, V., Khazina, I., Krivonogov, S., Kremenetski, K., Nield, J., Novenko, E., Ryabogina, N., Solovieva, N., Willis, K.J., Zernitskaya, V.: Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quaternary Sci. Rev., 157, 80–97, DOI: 10.1016/j.quascirev.2016.11.022 2017.
- Blaauw, M. and Christen, J.A.: Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal., 6, 457–474, 2011.
 Blok, D., Heijmans, M.P.D., Schaepman-Strub, G., Kononov, A.V., Maximov, T.C., Berendse, F.: Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biol., 16, 1296–1305, DOI: 10.1214/11-BA618, 2010.
- 25 Cao, X., Herzschuh, U., Ni, J., Zhao, Y., Böhmer, T.: Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years. Holocene, 25, 79–91, DOI: 10.1111/oik.01525, 2015.

Cao, X., Tian, F., Andreev, A., Anderson, P.M., Lozhkin, A.V., Bezrukova, E.V., Ni, J., Rudaya, N., Stobbe, A., Wieczorek, M., Herzschuh, U.: A taxonomically harmonized and temporally standardized

8

fossil pollen dataset from Siberia covering the last 40 ka. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.898616. 2019.

Cao, X., Ni, J., Herzschuh, U., Wang, Y., Zhao, Y.: A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev. Palaeobot.

5 Palynol., 194, 21–37, DOI: 10.1016/j.revpalbo.2013.02.003, 2013.

Cao, X., Tian, F., Li, F., Gaillard, M-.J., Rudaya, N., Herzschuh, U.: Pollen-based quantitative land-cover reconstruction for northern Asia during the last 40 ka, Clim. Past. Diss. DOI: 10.5194/cp-2018-111, 2018.

Foley, J. A., Costa, M. H., Delire, C., Ramankutty, N., Snyder, P.: Green surprise? How terrestrial

- ecosystems could affect earth's climate. Front. Ecol. Environ., 1, 38–44, DOI: 10.2307/3867963, 2003.
 Gaillard, M.-J., Sugita, S., Mazier, F., Trondman, A.-K., Brostrom, A., Hickler, T., Kaplan, J.O., Kjellström, E., Kokfelt, U., Kunes, P., Lemmen, C., Miller, P., Olofsson, J., Poska, A., Rundgren, M., Smith, B., Strandberg, G., Fyfe, R., Nielsen, A.B., Alenius, T., Balakauskas, L., Barnekow, L., Birks, H.J.B., Bjune, A.E., Bjorkman, L., Giesecke, M., Hjelle, K., Kalmina, L., Kangur, M., Van Der Knaap,
- W.O., Koff, T., Lageras, P., Latałowa, M., Leydet, M., Lechterbeck, J., Lindbladh, M., Odgaard, B.V., Peglar, S.M., Segerstrom, U., Von Stedingk, H., Seppä, H.: Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Clim. Past, 6, 483–499, DOI: 10.5194/cp-6-483-2010, 2010. Gajewski, K.: The global pollen database in biogeographical and palaeoclimatic studies. Prog. Phys. Geog., 32, 379–402, DOI: 10.1177/0309133308096029, 2008.
- 20 Herzschuh, U., Birks, H.J.B., Laepple, T., Andreev, A., Melles, M., Brigham-Grette, J.: Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nat. Commun., 11967, DOI: 10.1038/ncomms11967, 2016.

Intergovernmental Panel on Climate Change (IPCC): Climate change 2007: the physical science basis summary for policymakers. Geneva, Switzerland: World Meteorological Organization, 2007.

25 Jackson, S.T., Overpeck, J.T., Webb, T., Keattch, S.E., Anderson, K.H.: Mapped plant-macrofossil and pollen records of late Quaternary vegetation change in eastern North America. Quaternary Sci. Rev., 16, 1–70, DOI: 10.1016/s0277-3791(96)00047-9, 1997.

Juggins, S.: rioja: Analysis of Quaternary Science Data. version 0.7-3, Available at: http://cran.r-project.org/web/packages/rioja/index.html, 2012.

9

Klemm, J., Herzschuh, U., Pestryakova, L.A.: Vegetation, climate and lake changes over the last 7,000 years at the boreal treeline in north-central Siberia. Quaternary Sci. Rev., DOI: 10.1016/j.quascirev.2015.08.015, 2015.

Lisitsyna, O.V., Giesecke, T., Hicks, S.: Exploring pollen percentage threshold values as an indication

5 for the regional presence of major European trees. Rev. Palaeobot. Palynol., 166, 311–324, DOI: 10.1016/j.revpalbo.2011.06.004, 2011.

MacDonald, G.M., Kremenetski, K.V., Beilman, D.W.: Climate change and the northern Russian treeline zone. Philos. Trans. R. Soc. A., 363, 2285–2299, DOI: 10.1098/rstb.2007.2200, 2008. Magri, D.: Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus

10 syvatica). J. Biogeogr., 35, 450–463, DOI: 10.1111/j.1365-2699.2007.01803.x, 2008.

Marsicek, J., Shuman, B.N., Bartlein, P., Shafer, S.L., Brewer, S.: Reconciling divergent trends and millennial variations in Holocene temperatures. Nature, 554, 92–96, DOI: 10.1038/nature25464, 2018.
Mauri, A., Davis, B.A.S., Collins, P.M., Kaplan, J.O.: The cliamte of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Sci. Rev., 112, 109–127,

15 DOI: 10.1016/j.quascirev.2015.01.013, 2015.

Müller, S., Tarasov, P.E., Andreev, A.A., Tütken, T., Gartz, S., Diekmann, B.: Late Quaternary vegetation and environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh. Quaternary Sci. Rev., 29, 2071–2086, DOI: 10.1016/j.quascirev.2010.04.024, 2010.

- Ni, J., Cao, X., Jeltsch, F., Herzschuh, U.: Biome distribution over the last 22,000 yr in China. Palaeogeogr. Palaeoclim. Palaeoecol., 409, 33–47, DOI: 10.1016/j.palaeo.2014.04.023, 2014.
 Niemeyer, B., Klemm, J., Pestryakova, J.A., Herzschuh, U.: Relative pollen productivity estimates for common taxa of the northern Siberian Arctic. Rev. Palaeobot. Palynol., 221, 71–82, DOI: 10.1016/j.revpalbo.2015.06.008, 2105.
- Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., Bard, E.: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484, 49–54, DOI: 10.1038/nature10915, 2012.
 Shuman, J.K., Shugart, H.H., O'halloran, T.L.: Sensitivity of Sieberian larch forests to climate change. Global Change Biol., 17, 2370–2384, DOI: 10.1111/j.1365-2486.2011.02417.x, 2011.

5

10

Sugita, S., Parshall, T., Calcote, R., Walker, K.: Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin. Quaternary Res., 74, 289–300, DOI: 10.1016/j.yqres.2010.07.008, 2010.

Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene, 17, 229–241, DOI: 10.1177/0959683607075837, 2007.

- Tarasov, P., Williams, J.W., Andreev, A., Nakagawa, T., Bezrukova, E., Herzschuh, U., Igarashi, Y., Müller, S., Werner, K., Zheng, Z.: Satellite- and pollen-based quantitative woody cover reconstructions for northern Asia: Verification and application to late-Quaternary pollen data. Earth Planet. Sci. Lett., 264, 284–298, DOI: 10.1016/j.epsl.2007.10.007, 2007.
- 10 Tarasov, P.E., Guiot, J., Cheddadi, R., Andreev, A.A., Bezusko, L.G., Blyakharchuk., T.A., Dorofeyuk, N.I., Filimonova, L.V., Volkova, V.S., Zernitskaya, V.P.: Climate in northern Eurasia 6000 years ago reconstructed from pollen data. Earth Planet. Sci. Lett., 171, 635–645, DOI: 10.1016/s0012-821x(99)00171-5, 1999a.

Tarasov, P.E., Nakagawa, T., Demske, D., Österle, H., Igarashi, Y., Kitagawa, J., Mokhova, L.M.,

15 Bazarova, V.B., Okuda, M., Gotanda, K., Miyoshi, N., Fujiki, T., Takemura, K., Yonenobu, H., Fleck, A.: Progress in the reconstruction of Quaternary climate dynamics in the Northwest Pacific: A new modern analogue reference dataset and its application to the 430-kyr pollen record from Lake Biwa. Earth-Sci. Rev., 108, 64–79, DOI: 10.1016/j.earscirev.2011.06.002, 2011.

Tarasov, P.E., Peyron, O., Guiot, J., Brewer, S., Volkova, V.S., Bezusko, L.G., Dorofeyuk, N.I.,

20 Kvavadze, E.V., Osipova, I.M., Panova, N.K.: Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Clim. Dynam., 15, 227–240, DOI: 10.1007/s003820050278, 1999b.

Tarasov, P.E., Webb, T., Andreev, A.A, Afanas'Eva, N.B., Berezina, N.A., Bezusko, L.G., Blyakharchuk, T.A., Bolikhovskaya, N.S., Cheddadi, R., Chernavskaya, M.M., Chernova, G.M.,

25 Dorofeyuk, N.I., Dirksen, V.G., Elina, G.A., Filimonova, L.V., Glebov, F.Z., Guiot, J., Gunova, V.S., Harrison, S.P., Jolly, D., Khomutova, V.I., Kvavadze, E.V., Osipova, I.M., Panova, N.K., Prentice, I.C., Saarse, L., Sevastyanov, D.V., Volkova, V.S., Zernitskaya, V.P.: Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the Former Soviet Union and Mongolia. J. Biogeogr., 25, 1029–1053, DOI: 10.1046/j.1365-2699.1998.00236.x, 1998.

11

Thompson, C., Beringer, J., Chapin, F.S., McGuire, A.D.: Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest. J. Veg. Sci., 15, 397–406, DOI: 10.1658/1100-9233(2004)015[0397:SCALEE]2.0.CO;2, 2004.

Tian, F., Cao, X., Dallmeyer, A., Ni, J., Zhao, Y., Wang, Y., Herzschuh, U.: Quantitative woody cover

5 reconstructions from eastern continental Asia of the last 22 ka reveal strong regional peculiarities. Quaternary Sci. Rev., 137, 33–44, DOI: 10.1016/j.quascirev.2016.02.001, 2016. Tian, F., Cao, X., Dallmeyer, A., Lohmann, G., Zhang, X., Ni, J., Andreev, A., Anderson, P.M., Lozhkin,

A.V., Bezrukova, E., Rudaya, N., Xu, Q., Herzschuh, U.: Biome changes and their inferred climatic drivers in northern and eastern continental Asia at selected times since 40 cal ka BP. Veg. Hist.

10 Archaeobot., 27, 365–379, DOI: 10.1007/s00334-017-0653-8, 2018.

Trondman, A.-K., Gaillard, M.-J., Mazier, F., Sugita, S., Fyfe, R., Nielsen, A.B., Twiddle, C., Barratt, P.,
Birks, H.J.B., Bjune, A.E., Björkman, L., Broström, A., Caseldine, C., David, R., Dodson, J., Dörfler,
W., Fischer, E., van Geel, B., Giesecke, T., Hultberg, T., Kalnina, L., Kangur, M., van der Knaap, P.,
Koff, T., Kuneš, P., Lagerås, P., Latałowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M.,

15 Marquer, L., Mitchell, F.J.G., Odgaard, B.V., Peglar, S.M., Persoon, T., Poska, A., Rösch, M., Seppä, H., Veski, S., Wick, L.: Pollen-based quantitative reconstruction of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modeling. Global Change Biol., 21, 676–697, DOI: 10.1111/gcb.12737, 2015.

Wang, B., Wu, Z., Chang, C.P., Liu, J., Li, J., Zhou, T.: Another look at interannual-to-interdecadal

variations of the East Asian Winter Monsoon: the northern and southern temperature modes. J. Climate,
 23, 1495–1512, DOI: 10.1175/2009JCLI3243.1, 2010.

23 Figure 1 Spatial distribution of fossil pollen records (+) in the study area. The number of each site is used as

24 its ID in Appendix A Table 1.

> 25 26

Figure 2 Pollen-infered presence/absence maps for Larix at key time slices. Black squares indicate presence while empty circles indicate absence.

27 28 29

Ericaceae; Po: Poaceae; Ar: Artemisia.

Earth System Discussion Science usions

30 Appendix A

31

	H
	abl
	e 1
	Ā
	eta
	ils
	e,
	Ę.
	F
	S.
,	Ę
	Ĕ
	rec
	9 .
	lsi
	nt
	he
1	8
	llei
	ā
	ata
	set
	Ŧ
	Ĕ
	Si
	bei
	ia.
	ñ
	ita
	ar
	ea
	vai.
	lab
	le
	at
	Þ.
	Sd
	:
	0
	.pa
	au B
	ae
	a.
	le/
	10
	H
	ž
	P
	A
	Ĝ
	A
	ΞA
	∞.
	8
	14

5		Lat.	Long.	Elev.	Archive			Dating	No. of dates &	Time span	Res.	
Ē	Site	(°)	(°)	(m)	type	Data type	Source	method	material code	(ka BP)	(yr)	Kelerence
1	Pobochnoye	53.03	51.84	58	Peat sed.	digitized	I	14C	10C+6E	14.4 - 0	540	Kremenetski et al., 1999
2	Novienky Peat	52.24	54.75	197	Peat sed.	counts	EPD, Pan	14C	10	4.5 - 0	270	López-García et al., 2003
ω	Ust'Mashevskoe	56.32	57.88	220	Peat sed.	counts	EPD, Pan	14C	5C	7.8 - 0	150	Panova et al., 1996
4	Aral Lake	44.42	59.98	53	Lake sed.	counts	EPD, Pan	14C	4U	8.7 - 0	260	Aleshinskaya, unpublished.
ъ	Fernsehsee Lake	52.83	60.5	290	Lake sed.	counts	From author	14C	10A	9.1 - 0.4	220	Stobbe et al., 2015
6	Karasieozerskoe	56.77	60.75	230	Peat sed.	counts	EPD, Pan	14C	3A	5.9 - 0.1	190	Panova, 1997
7	Zaboinoe Lake	55.53	62.37	275	Lake sed.	counts	GPD, EPD, Pan	14C	10	12.3 - 0.1	220	Khomutova & Pushenko, 1995
∞	Shpindler Cape	69.72	62.8	20	Fluvial sed.	counts	Pan	14C	12A	15.8 - 0	420	Andreev et al., 2001
9	Mokhovoye	53.77	64.25	178	Peat sed.	counts	GPD, EPD, Pan	14C	4C+1E	6.0 - 0	180	Kremenetskii et al., 1994
10	Chernaya Gorka	67.08	65.35	170	Palsa sed.	digitized	I	14C	1A+3C	10.1 - 6.9	70	Jankovská et al., 2006
11	Lyadhej-To Lake	68.25	65.75	150	Lake sed.	counts	Pan	14C	14A+6E	12.5 - 0.3	170	Andreev et al., 2005
12	Chesnok Peat	60	66.5	42	Peat sed.	counts	GPD, EPD, Pan	14C	7C	10.6 - 0.5	280	Volkova, 1966
13	Baidara Gulf	68.85	66.9	30	Coast sed.	counts	EPD, Pan	14C	10C	15.8 - 4.6	170	Andreev et al., 1998
14	Komaritsa Peat	57.5	69	42	Peat sed.	counts	GPD, EPD, Pan	14C	10C	10.5 - 0.5	350	Volkova, 1966
15	Demyanskoye	59.5	69.5	65	Fluvial sed.	counts	GPD, EPD, Pan	14C	1A	50.3 - 22.3	2000	Bakhareva, 1983
16	Nulsaveito	67.53	70.17	57	Peat sed.	counts	EPD, Pan	14C	4A+1C	8.4 - 6.4	70	Panova, 1990
17	Salym-Yugan	60.02	72.08	56	Peat sed.	digitized	ı	14C	5C	10.1 - 0.2	200	Pitkänen et al., 2002
18	Nizhnevartovsk	62	76.67	54	Peat sed.	counts	GPD, EPD, Pan	14C	3A+7C	11.1 - 0	300	Neustadt and Zelikson, 1985
19	Nizhnevartovskoye	61.25	77	55	Peat sed.	counts	GPD, EPD, Pan	14C	1A+13C+1E	12.6 - 0	380	Neishtadt, 1976

;	:	Lat.	Long.	Elev.	Archive		•	Dating	No. of dates &	Time span	Res.	
ē	Site	(°)	(°)	(m)	type	Data type	Source	method	material code	(ka BP)	(yr)	Reference
20	Entarnoye Peat	59	78.33	65	Peat sed.	counts	GPD, EPD, Pan	14C	5C	14.9 - 0.9	460	Neishtadt, 1976
21	Lukaschin Yar	61	78.5	65	Peat sed.	counts	GPD, EPD, Pan	14C	13C	10.9 - 0.3	430	Neishtadt, 1976
22	Big Yarovoe Lake	52.85	78.63	79	Lake sed.	counts	From author	Biwa*	'	4.3 - 0	190	Rudaya et al., 2012
23	Sverdrup	74.5	79.5	7	Peat sed.	counts	GPD, EPD, Pan	14C	ЗC	13.4 - 11.1	290	Tarasov et al., 1995
24	BP99-04/06	73.41	79.67	-32	Marine sed.	counts	Pan	14C	12U	10.0 - 0.3	190	Kraus et al., 2003
25	Pur-Taz Peatland	66.7	79.73	50	Peat sed.	counts	GPD, EPD, Pan	14C	5A	10.3 - 4.7	80	Peteet et al., 1998
26	Petropavlovka	58.33	82.5	100	Peat sed.	counts	EPD, Pan	14C	4C+1E	10.5 - 0.1	160	Blyakharchuk, 1989
27	Kalistratikha	53.33	83.25	190	Peat sed.	counts	GPD, EPD, Pan	14C	4A	39.0 - 12.7	1870	Zudin and Votakh, 1977
28	Tom' River Peat	56.17	84	100	Peat sed.	counts	GPD	14C	6C	10.1 - 0.2	390	Arkhipov and Votakh, 1980
29	Novouuspenka	56.62	84.17	150	Fluvial sed.	counts	EPD, Pan	14C	5C	5.3 - 0	130	Blyakharchuk, 1989
30	Kirek Lake	56.1	84.22	90	Lake sed.	digitized	'	14C	3G	10.5 - 1.5	190	Blyakharchuk, 2003
31	Zhukovskoye Mire	56.33	84.83	106	Peat sed.	counts	From author	14C	9C+6H	11.2 - 0	130	Borisova et al., 2011
32	Chaginskoe	56.45	84.88	80	Peat sed.	digitized		14C	2C	8.8 - 0	320	Blyakharchuk, 2003.
33	Karginskii Cape	70	85	60	Peat sed.	counts	GPD, EPD, Pan	14C	13C	8.9 - 3.5	290	Firsov et al., 1972
34	Ovrazhnoe	56.25	85.17	110	Peat sed.	counts	EPD, Pan	14C	1C	5.8 - 0.1	230	Blyakharchuk, 1989
ω 5	Bugristoye Bog	58.25	85.17	100	Peat sed.	counts	EPD, Pan	14C	4C+1E	11.5 - 5.0	100	Blyakharchuk, 1989
36	Igarka Peat	67.48	86.5	2	Peat sed.	counts	GPD, EPD, Pan	14C	1A+2C	10.9 - 5.9	230	Kats, 1953
37	Yenisei	68.17	87.15	89	Peat sed.	digitized		14C	7C	6.5 - 1.6	110	Andreev and Klimanov 2000
38	Teguldet	57.33	88.17	150	Peat sed.	counts	Pan	14C	3C	7.3 - 2.4	06	Blyakharchuk, 1989
39	Maksimkin Yar	58.33	88.17	150	Peat sed.	counts	EPD, Pan	14C	4C	8.3 - 0.2	170	Blyakharchuk, 1989
40	Lama Lake	69.53	90.2	77	Lake sed.	counts	From author	14C	26A+4D+4E	19.5 - 0	170	Andreev et al., 2004
41	Levinson-Lessing Lake	74.47	98.64	NA	Lake sed.	counts	Pan	14C	30A+19E	35.3 - 0	390	Andreev et al., 2003
42	LA013-94	72.19	99.58	65	Peat sed.	counts	Pan	14C	2C+1U	16.1 - 0	1240	Andreev et al., 2002
43	LAB2-95	72.38	99.86	65	Peat sed.	counts	Pan	14C	1A+1C	17.4 - 5.6	080	Andreev et al., 2002

5	D:F-	Lat.	Long.	Elev.	Archive			Dating	No. of dates &	Time span	Res.	
Ę	Site	(°)	(°)	(m)	type	Data type	Source	method	material code	(ka BP)	(yr)	veletetice
44	Taymyr Lake_SAO4	74.53	100.53	47	Lake sed.	counts	Pan	14C	1C	8.7 - 0.4	600	Andreev et al., 2003
45	Taymyr Lake_SAO1	74.55	100.53	47	Lake sed.	counts	Pan	14C	6A+5C	57.9 - 0	1320	Andreev et al., 2003
46	11-CH-12A Lake	72.4	102.29	60	Lake sed.	counts	Pan	14C	8A+7E	7.0 - 0.1	110	Klemm et al., 2015
47	Baikal -CON01-605-5	51.58	104.85	480	Lake sed.	digitized	I	14C	12D	11.5 - 0	130	Demske et al., 2005
48	Baikal -CON01-605-3	51.59	104.85	480	Lake sed.	digitized	I	14C	5D	17.7 - 0	200	Demske et al., 2005
49	Chernoe Lake	50.95	106.63	500	Lake sed.	counts	EPD, Pan	14C	4E	7 - 0.7	620	Vipper, 2010
50	Khanda-1	55.44	107	840	Peat sed.	counts	From author	14C	ЗC	3.1 - 0.3	50	Bezrukova et al., 2011
51	Khanda	55.44	107	840	Peat sed.	counts	From author	14C	6C	5.8 - 0	140	Bezrukova et al., 2011
52	Cheremushka Bog	52.75	108.08	1500	Peat sed.	digitized	I	14C	6C	33.5 - 0	460	Shichi et al., 2009
53	Okunaika	55.52	108.47	802	Peat sed.	counts	From author	14C	6C	8.3 - 2.0	120	Bezrukova et al., 2011
54	Baikal -CON01-603-5	53.95	108.91	480	Lake sed.	digitized	I	14C	10D	15.8 - 0	270	Demske et al., 2005
55	Ukta Creek mouth	55.8	109.7	906	Peat sed.	counts	From author	14C	ЗU	5.1 - 0	160	Bezrukova et al., 2006
56	Bolshoe Eravnoe Lake	52.58	111.67	947	Lake sed.	counts	EPD, Pan	14C	3E	7.3 - 0.2	710	Vipper, 2010
57	Madjagara Lake	64.83	120.97	160	Lake sed.	counts	GPD, EPD, Pan	14C	7E	8.2 - 0.2	120	Andreev and Klimanov, 1989
58	Khomustakh Lake	63.82	121.62	120	Lake sed.	counts	GPD, EPD, Pan	14C	9E	12.3 - 0.1	170	Andreev et al., 1989
59	Boguda Lake	63.67	123.25	120	Lake sed.	counts	GPD, EPD, Pan	14C	7E	10.9 - 0.4	180	Andreev et al., 1989
60	Barbarina Tumsa	73.57	123.35	10	Peat sed.	counts	Pan	14C	4C	4.9 - 0.3	240	Andreev et al., 2004
61	Lake Kyutyunda	69.63	123.65	66	Lake sed.	counts	Pan	14C	10E	10.8 - 0.3	360	Biskaborn et al., 2015
62	Suollakh	57.05	123.85	816	Peat sed.	counts	GPD, EPD, Pan	14C	8C	12.8 - 3.7	180	Andreev et al., 1991
63	Derput Bog	57.03	124.12	700	Peat sed.	counts	GPD, EPD, Pan	14C	1A+4C	11.7 - 0.8	210	Andreev and Klimanov, 1991
64	Nikolay Lake	73.67	124.25	35	Lake sed.	counts	EPD, Pan	14C	6A	12.5 - 0	600	Andreev et al., 2004
65	Dyanushka River	65.04	125.04	123	Fluvial sed.	counts	Pan	14C	13A	12.6 - 0	170	Werner et al., 2010
66	Billyakh Lake	65.27	126.75	340	Lake sed.	counts	Pan	14C	1A+10E	50.6 - 0.2	470	Müller et al., 2010
67	Billyakh Lake	65.3	126.78	340	Lake sed.	counts	Pan	14C	7A	14.1 - 0	180	Müller et al., 2009

i	:	Lat.	Long.	Elev.	Archive			Dating	No. of dates &	Time span	Res.	1
Ð	Site	(°)	(°)	(m)	type	Data type	Source	method	material code	(ka BP)	(yr)	Reference
89	Dolgoe Ozero	71.87	127.07	40	Lake sed.	counts	From author	14C	1A+9B	15.3 - 0	210	Pisaric et al., 2001
69	Chabada Lake	61.98	129.37	290	Lake sed.	counts	GPD, EPD, Pan	14C	15U	13 - 0	110	Andreev and Klimanov, 1989
70	Mamontovy Khayata	71.77	129.45	0	Coast sed.	counts	Pan	14C	40A+24C	58.4 - 0	970	Andreev et al., 2002
71	Nuochaga Lake	61.3	129.55	260	Lake sed.	counts	GPD, EPD, Pan	14C	4E	6.5 - 0	140	Andreev and Klimanov, 1989
72	Tumannaya River	42.32	130.73	4	Fluvial sed.	counts	GPD	14C	1F	14.4 - 0.1	380	Anderson et al., 2002
73	Amba River	43.32	131.82	С	Peat sed.	counts	GPD	14C	1A+1C	4.2 - 2.0	260	Korotky et al., 1980
74	Paramonovskii Stream	43.2	133.75	120	Fluvial sed.	counts	GPD	14C	2A+1E	32.2 - 0.6	4530	Korotky et al., 1993
75	Ovrazhnyi Stream-2	43.25	134.57	10	Peat sed.	counts	GPD	14C	3A+1C	36.0 - 0.4	2250	Korotky and Karaulova, 1975
76	Selitkan-2	53.22	135.03	1300	Peat sed.	counts	GPD	14C	4C	6.4 - 1.9	260	Volkov and Arkhipov, 1978
77	Selitkan-1	53.22	135.05	1320	Peat sed.	counts	GPD	14C	6C	7.9 - 0	140	Korotky et al., 1985
78	Selitkan-3	53.22	135.07	1310	Peat sed.	counts	GPD	14C	2E	10.2 - 2.3	790	Korotky and Kovalyukh, 1987
79	Bugutakh	67.83	135.12	128	Fluvial sed.	counts	GPD, EPD, Pan	14C	1A	20.4 - 0	1860	Anderson et al., 2002
80	Betenkyos	67.67	135.58	135	Fluvial sed.	counts	GPD, EPD, Pan	14C	1A+1E	2.2 - 0	230	Anderson et al., 2002
81	Adycha River	67.75	135.58	130	Fluvial sed.	counts	GPD	14C	5A	9.2 - 3.7	420	Anderson et al., 2002
82	Ulakhan	67.83	135.58	130	Fluvial sed.	counts	GPD	14C	3C	8.6 - 5.7	330	Anderson et al., 2002
83	Kiya	47.83	135.67	100	Peat sed.	digitized	ı	14C	4C	10.0 - 0.9	210	Bazarova et al., 2008
84	Laptev PM9462	74.3	136	0	Marine sed.	digitized	I	14C	12U	9.3 - 0.2	100	Naidina and Bauch, 2001
85	Khocho	71.05	136.23	6	Peat sed.	counts	GPD, EPD, Pan	14C	1C	10.4 - 0.4	300	Velichko et al., 1994
86	Samandon	70.77	136.25	10	Peat sed.	counts	GPD, EPD, Pan	14C	3A+8C+4E	7.9 - 0.2	280	Velichko et al., 1994
87	Gur	50	137.05	35	Peat sed.	digitized	I	14C	13C	22.1 - 0	340	Mokhova et al., 2009
88	Gurskii Peat	50.07	137.08	15	Peat sed.	counts	GPD	14C	7C	13.1 - 1.5	380	Korotky, 1982
68	Siluyanov Yar	46.13	137.83	20	Fluvial sed.	counts	GPD	14C	6A	12.8 - 4.9	1130	Korotky et al., 1988
90	Oumi	48.22	138.4	066	Peat sed.	counts	GPD	14C	5C	2.6 - 0.4	80	Anderson et al., 2002
91	Opasnaya River	48.23	138.48	1320	Peat sed.	counts	GPD	14C	7C	13.3 - 6.7	360	Korotky et al., 1988

្លូ Earth System	D
Science	SCU
- Data	ssic
aDdld	suc

	Lat.	Long.	Elev.	Archive		1	Dating	No. of dates &	Time span	Res.	1
ID Site	(°)	(°)	(m)	type	Data type	Source	method	material code	(ka BP)	(yr)	Reference
116 Gek Lake	63.52	147.93	696	Lake sed.	counts	GPD, EPD, Pan	14C	8A+1B	9.6 - 0	440	Stetsenko, 1998
117 Kirgirlakh Stream_2	62.67	147.98	700	Fluvial sed.	counts	GPD, EPD, Pan	14C	4A	34.5 - 0.2	2140	Shilo et al., 1983
118 Kirgirlakh Stream_4	62.67	147.98	700	Fluvial sed.	counts	GPD, EPD, Pan	14C	4A	7.1 - 1.0	610	Shilo et al., 1983
119 Elgennya Lake	62.08	149	1040	Lake sed.	counts	GPD, EPD, Pan	14C	6A	16.0 - 0	310	Lozhkin et al., 1996
120 Figurnoye Lake	62.1	149	1053	Lake sed.	counts	GPD	14C	4A	1.3 - 0	30	Lozhkin et al., 1996
121 Jack London Lake	62.17	149.5	820	Lake sed.	counts	GPD	14C	7F	19.5 - 0.2	320	Lozhkin et al., 1993
122 Rock Island Lake	62.17	149.5	870	Lake sed.	counts	GPD	14C	2E	6.6 - 0	470	Lozhkin et al., 1993
123 Sosednee Lake	62.17	149.5	822	Lake sed.	counts	GPD	14C	4E+1F	26.3 - 0	640	Lozhkin et al., 1993
124 Oldcamp Lake	62.04	149.59	853	Lake sed.	counts	GPD, EPD, Pan	14C	2E	3.7 - 0	370	Anderson, unpublished
125 Glukhoye Lake	59.75	149.92	10	Peat sed.	counts	GPD, EPD, Pan	14C	5C	9.4 - 3.4	1000	Lozhkin et al., 1990
126 Pepelnoye Lake	59.85	150.62	115	Lake sed.	counts	GPD, EPD, Pan	14C	2A	4.3 - 0	180	Lozhkin et al., 2000b
127 Tanon River	59.67	151.2	40	Fluvial sed.	counts	GPD, EPD, Pan	14C	6A+4C+1F	42.4 - 6.6	1240	Lozhkin and Glushkova, 1997a
128 Maltan River	60.88	151.62	735	Peat sed.	counts	GPD, EPD, Pan	14C	4A+7C	12.0 - 9.4	120	Lozhkin and Glushkova, 1997b
129 Chistoye Lake	59.55	151.83	91	Peat sed.	counts	EPD, Pan	14C	5C	7.0 - 0	540	Anderson et al., 1997
130 Lesnoye Lake	59.58	151.87	95	Lake sed.	counts	GPD	14C	8A	15.5 - 0	400	Anderson et al., 1997
131 Elikchan 4 Lake	60.75	151.88	810	Lake sed.	counts	GPD, EPD, Pan	14C	16U	55.5 - 0	440	Lozhkin and Anderson, 1995
132 Podkova Lake	59.96	152.1	660	Lake sed.	counts	GPD, EPD, Pan	14C	5A	6.0 - 0	220	Anderson et al., 1997
133 Goluboye Lake	61.12	152.27	810	Lake sed.	counts	EPD, Pan	14C	11A+2B	9.7 - 0	240	Lozhkin et al., 2000a
134 Alut Lake	60.14	152.31	480	Lake sed.	counts	GPD	14C	16A+9B	50.4 - 0	430	Anderson et al., 1998a
135 Taloye Lake	61.02	152.33	750	Lake sed.	counts	GPD, EPD, Pan	14C	7A	10.3 - 0	290	Lozhkin et al., 2000a
136 Julietta Lake	61.34	154.56	880	Lake sed.	counts	From author	14C	2A+4E+1I	36.1 - 1.4	270	Anderson et al., 2010
137 Pernatoye Lake	50.04	155.4	6	Lake sed.	counts	From author	14C	6A+1E	10.1 - 0.1	160	Anderson et al., 2015
138 East Siberian Sea 11	71.07	156.25	8	Peat sed.	counts	GPD, Pan	14C	2A+2C	9.5 - 4.5	550	Lozhkin et al., 1975
139 Kur Peat	69.97	156.37	47	Peat sed.	counts	GPD, EPD, Pan	14C	1A+4C	11.7 - 7.5	430	Lozhkin and Vazhenina, 1987

	Lat.	Long.	Elev.	Archive		1	Dating	No. of dates &	Time span	Res.	1
ID Site	(°)	(°)	(m)	type	Data type	Source	method	material code	(ka BP)	(yr)	Reterence
140 Coast	71.07	156.5	9	Peat sed.	counts	GPD	14C	1C	13.0 - 1.7	1600	Anderson et al., 2002
141 Kurop7	70.67	156.75	7	Peat sed.	counts	GPD, EPD, Pan	14C	3C	5.7 - 0.4	760	Anderson et al., 2002
142 Sokoch Lake	53.25	157.75	495	Lake sed.	digitized		14C	8E	9.7 - 0.3	250	Dirksen et al., 2012.
143 Stadukhinskaya-1	68.67	159.5	12	Fluvial sed.	counts	GPD, EPD, Pan	14C	4C	9.5 - 7.2	210	Lozhkin and Prokhorova, 1982
144 Stadukhinskaya-2	68.67	159.5	л	Fluvial sed.	counts	GPD, EPD, Pan	14C	2C	1.0 - 0	180	Lozhkin and Prokhorova, 1982
145 Two-Yurts Lake-3	56.82	160.04	275	Lake sed.	percent	Pan	14C	5A	6.0 - 2.8	140	Hoff et al., 2015
146 Two-Yurts Lake-2	56.82	160.07	275	Lake sed.	percent	Pan	14C	5A	2.5 - 0.1	130	Hoff et al., 2015
147 Two-Yurts Lake-5	56.82	160.07	275	Lake sed.	percent	Pan	14C	5A	4.4 - 2.5	120	Hoff et al., 2015
148 Cherny Yar	56.07	161	148	Peat sed.	counts	GPD, EPD, Pan	14C	1C+1E	13.0 - 0.5	830	Osipova. unpublished
149 Penzhinskaya Gulf	62.42	165.42	32	Peat sed.	counts	GPD, EPD, Pan	14C	2C	8.9 - 3.4	500	lvanov et al., 1984
150 Enmynveem River1	68.17	165.93	400	Peat sed.	counts	GPD, EPD, Pan	14C	2C+2F	36.4 - 9.3	2470	Lozhkin et al., 1988
151 Enmynveem River2	68.25	166	500	Peat sed.	counts	GPD, EPD, Pan	14C	4C	10.7 - 4.0	420	Anderson et al., 2002
152 Ledovyi Obryu	64.1	171.18	44	Lake sed.	counts	GPD, EPD, Pan	14C	3A+3C+1F	19.9 - 9.7	1140	Lozhkin et al., 2000c
153 Enmyvaam River	67.42	172.08	490	Peat sed.	counts	GPD, EPD, Pan	14C	1A+4C	10.6 - 4.3	630	Lozhkin and Vazhenina, 1987
154 El'gygytgyn Lake	67.5	172.1	-170	Lake sed.	percent	Pan	polarity		20.2 - 1.5	650	Melles et al., 2012
155 El'gygytgyn Lake P1	67.37	172.22	561	Palaeosol	counts	From author	14C	11A	12.9 - 3.1	580	Andreev et al., 2012
156 El'gygytgyn Lake P2	67.55	172.13	542	Palaeosol	counts	From author	14C	9A+1E	16.6 - 0	470	Andreev et al., 2012
157 Melkoye Lake	64.86	175.23	36	Lake sed.	counts	From author	14C	21E	39.1 - 0	1260	Lozhkin and Anderson, 2013
158 Sunset Lake	64.84	175.3	36	Lake sed.	counts	From author	14C	7A	14.0 - 0	260	Lozhkin and Anderson, 2013
159 Malyi Krechet Lake	64.8	175.53	32	Lake sed.	counts	From author	14C	12A	9.6 - 0	400	Lozhkin and Anderson, 2013
160 Patricia Lake	63.33	176.5	121	Lake sed.	counts	From author	14C	3A+7E	19.1 - 0	290	Anderson and Lozhkin, 2015
161 Gytgykai Lake	63.42	176.57	102	Lake sed.	counts	GPD, EPD, Pan	14C	1A+8E	32.3 - 0	470	Lozhkin et al., 1998
162 Amguema River 1	67.75	178.7	175	Fluvial sed.	counts	GPD	14C	2C	23.8 - 1.6	5550	Lozhkin et al., 1995

Science Science Science Science

https://doi.org/10.5194/essd-2019-7 Preprint. Discussion started: 28 May 2019 © Author(s) 2019. CC BY 4.0 License.

	j	<u></u>	Lat.	Long.	Elev.	Archive		•	Dating	No. of dates &	Time span	Res.	1
	ē	Site	(°)	(°)	(m)	type	Data type	Source	method	material code	(ka BP)	(yr)	Keterence
	163	3 Amguema River 2	67.67	178.6	87	Fluvial sed.	counts	GPD	14C	2A	3.2 - 0.1	390	Lozhkin et al., 1995
	164	Blossom Cape	70.68	178.95	6	Peat sed.	counts	GPD, EPD, Pan	14C	1C	13.8 - 0.2	3400	Oganesyan et al., 1993
	165	5 Wrangle Island_JLL	70.83	-179.8	7	Lake sed.	counts	GPD	14C	5A+1E	16.1 - 0.3	790	Lozhkin et al., 2001
	166	5 Wrangel Island_wr12	71.17	-179.8	200	Peat sed.	counts	GPD	14C	17A+3C	13.7 - 10.2	110	Lozhkin et al., 2001
	167	Neizvestnaya	71.55	-179.4	ω	Peat sed.	counts	EPD, Pan	14C	1C	5.2 - 1.2	1000	Oganesyan et al., 1993
	168	3 Kresta Gulf	66	-179	ы	Peat sed.	counts	GPD, EPD, Pan	14C	1A+1C	9.3 - 3.4	580	lvanov, 1986
	169) Konergino	65.9	-178.9	10	Peat sed.	counts	GPD, EPD, Pan	14C	1C	9.8 - 0	006	lvanov et al., 1984
	170) Dlinnoye Lake	67.75	-178.8	280	Lake sed.	counts	GPD	14C	ЗA	1.3 - 0	130	Anderson et al., 2002
	171	L Dikikh Olyenyeii Lake	67.75	-178.8	300	Lake sed.	counts	EPD, Pan	14C	1A+4C	50.3 - 0	1050	Anderson et al., 2002
	172	2 Arakamchechen Island	64.75	-172.1	7	Peat sed.	counts	GPD, EPD, Pan	14C	1C	11.5 - 0	1050	lvanov, 1986
	173	3 Lorino	65.5	-171.7	12	Peat sed.	counts	GPD	14C	3C	17.9 - 5.1	850	lvanov, 1986
32	* inc	dicates the inclination of a	ıge-deptl	h model	with L	ake Biwa. Ele	v. = elevation	n. Res. (yr) indica	tes the terr	poral resolution. s	ed.: sediment.	GPD:	Global Pollen Database;
33	EPD): European Pollen Datab	ase; Pan	1: PANG	AEA.	Material code	s for radioca	urbon dating: A =	terrestria	l plant macrofossil	; B = non-te	rrestrial	plant macrofossil; C =
34	peat	-gyttja bulk; D = pollen; E	3 = total	organic i	natter	from silt; $F = \varepsilon$	nimal remair	ns and shell; $G = c$	charcoal; H	$I = CaCO_3; U = un$	known.		
35													

Earth System Discussion Science usions

39 Table 2 Pollen taxa used in the dataset and their corresponding original Latin names.

Standardized pollen name	Original pollen name
Abies	Abies, Abies sibirica
Acer	Acer
Alnus (shrub)	Alnaster, Alnaster fruticosa, Alnus cf. fruticosa, Alnus viridis, Alnus viridis ssp. fruticosa, Alnus viridis-type, Duschekia fruticosa
Alnus (tree)	Alnus cf. hirsuta, Alnus glutinosa, Alnus hirsuta, Alnus incana
Alnus (undiff.)	Alnus, Alnus undiff.
Apiaceae	Apiaceae, Bupleurum, Heracleum, Umbelliferae, Umbelliferae undiff.
Araliaceae	Aralia, Araliaceae
Artemisia	Artemisia, Artemisia tilesii, Artemisia undiff.
Asteraceae (non-Artemisia)	Achillea, Anthemis, Aster, Asteraceae, Asteraceae cichorioideae, Asteraceae liguliflorae, Asteraceae subfam. Asteroideae, Asteraceae subfam.
	cichorioideae, Asteraceae tubuliflorae, Centaurea cyanus, Cirsium, Compositae, Compositae subfam. Asteroideae, Compositae subfam.
Ratula (chrub)	Ratula (shuh) Ratula of R. frutiona Ratula of R. nana Ratula of nana Ratula divarianta Ratula frutionsa Ratula nana sen
	exilis, Betula nana ssp. nana, Betula ovalifolia, Betula sect. Fruticosae, Betula sect. Nanae, Betula sect. Nanae/Fruticosae
Betula (tree)	Betula alba-type, Betula cf. B. pendula, Betula cf. alba, Betula costata, Betula dahurica, Betula ermanii, Betula pendula, Betula platyphylla,
	Betula pubescens, Betula schmidtii, Betula sect. Albae, Betula sect. Betula, Betula sect. Costatae
Betula (undiff.)	Betula, Betula undiff., Betulaceae undiff.
Boraginaceae	Boraginaceae, Lithospermum-type
Brassicaceae	Brassicaceae, Brassicaceae undiff., Cardamine, Crucifierae, Crucififerae, Draba
Campanulaceae	Campanulaceae
Cannabis	Cannabaceae, Cannabis
Caprifoliaceae	Caprifoliaceae, Caprifoliaceae undiff., Diervilla, Knautia, Linnaea borealis, Lonicera, Sambucus, Viburnum
Carpinus	Carpinus, Carpinus cordata, Carpinus betulus
Carya	Carya

Standardized pollen name	Original pollen name
Caryophyllaceae	Caryophyllaceae, Caryophyllaceae Sf. Silenoideae-t, Caryophyllaceae undiff., Cerastium, Gypsophila repens-type, Illecebrum verticillatum,
	Lychnis-type, Minuartia, Silene, Stellaria holostea
Castanea	Castanea
Cedrus	Cedrus
Celastraceae	Celastraceae, Euonymus
Celtis	Celtis
Cerealia+large Poaceae	Cerealia, Hordeum, Triticum-type
Chenopodiaceae	Chenopodiaceae, Chenopodiaceae/Amaranthaceae
Convolvulaceae	Convolvulaceae
Cornus	Cornus, Cornus suecica
Corylus	Corylus
Crassulaceae	Crassulaceae, Mentanthes trifoliata, Sedum
Cupressaceae (other)	Cupressaceae
Cyperaceae	Cyperaceae
Dacrydium	Dacrydium
Dipsacaceae	Dipsacaceae, Succisa
Droseraceae	Drosera, Droseraceae
Elaeagnus	Elaeagnus
Ephedra	Ephedra, Ephedra distachya, Ephedra distachya+fragilis, Ephedra fragilis, Ephedra monosperma
Ericaceae	Calluna, Cassiope, Empetrum, Ericaceae, Ericaceae undiff., Ericales, Ericales undiff., Ledum, Rhododendron, Vaccinium
Euphorbiaceae	Euphorbia, Euphorbiaceae
Fabaceae (herb)	Trifolium
Fabaceae (shrub)	Astragalus
Fabaceae (undiff.)	Fabaceae, Fabaceae undiff., Leguminosae, Papilionaceae
Fagus	Fagus

24

ame
aceae, Gentianaceae undiff.
nium
oides
gere
ae, Lamiaceae undiff., Mentha-type
ica, Larix gmelinii, Larix sibirca
Lloydia, Polygonatum, Tofieldia, Veratrum, Zigadenus
un de la constante de la const
ircaea, Circaea alpina, Epilobium, Epilobium angustifolium, Epilobium latifolium, Epilobium undiff., Onagraceae,
s mandschurica
e undiff., Syringa
estin un Litia a ge oi ac

Earth System Discussion Science usions

https://doi.org/10.5194/essd-2019-7 Preprint. Discussion started: 28 May 2019 © Author(s) 2019. CC BY 4.0 License.

Standardized pollen name	Original pollen name
Phellodendron	Phellodendron
Picea	Picea, Picea abies ssp. obovata, Picea obovata, Picea sect. Eupicea, Picea sect. Omorica, Picea undiff., Picea/Pinus undiff.
Pinguicula	Pinguicula
Pinus (Diploxylon)	Pinus (Diploxylon), Pinus subgen. Pinus, Pinus subg. Pinus undiff., Pinus sylvestris
Pinus (Haploxylon)	Pinus (Haploxylon), Pinus cembra, Pinus koraiensis, Pinus pumila, Pinus sibirica, Pinus sibirica-type, Pinus subgen. Strobus, Pinus subgen.
	Strobus undiff., Pinus subgen. Haploxylon, Pinus subsect. Cembrae undiff.
Pinus (undiff.)	Pinaceae, Pinaceae undiff., Pinus, Pinus undiff.
Plantago	Plantaginaceae, Plantago
Plumbaginaceae	Armeria, Armeria maritima-type, Goniolimon, Limonium, Plumbaginaceae
Poaceae (wildgrass)	Gramineae, Poaceae, Stipa
Podocarpus	Podocarpus
Polemoniaceae	Helianthemum, Phlox, Phlox sibirica, Polemoniaceae, Polemoniaceae undiff., Polemonium, Polemonium acutiflorum, Polemonium boreale
Polygala	Polygala
Polygonaceae (other)	Oxyria, Oxyria digyna, Polygonaceae, Polygonaceae undiff.
Polygonum	Polygonum, Polygonum alaskanum, Polygonum amphibium, Polygonum aviculare, Polygonum bistorta, Polygonum bistortoides-type,
	Polygonum czukavinae, Polygonum ellipticum, Polygonum laxmanii, Polygonum sect. Aconogonon, Polygonum sect. Bistorta, Polygonum sect. Persicaria, Polygonum tripterocarpum, Polygonum undiff., Polygonum viviparum
Populus	Populus
Portulacaceae	Claytonia, Claytonia acutifolia, Claytonia arctica, Claytonia sarmentosa, Claytonia sibirica, Claytonia undiff., Claytoniella vassilievii,
	Portulacaceae, Portulacaceae undiff.
Primulaceae	Androsace, Androsaceae, Lysimachia, Primula, Primulaceae, Primulaceae undiff.
Pterocarya	Pterocarya
Pyrolaceae	Pyrolaceae
Quercus (deciduous)	Quercus dentata, Quercus mongolica
Quercus (undiff.)	Quercus, Quercus undiff.

Earth System Discussion Science usions

https://doi.org/10.5194/essd-2019-7 Preprint. Discussion started: 28 May 2019 © Author(s) 2019. CC BY 4.0 License.

Ranunculaceae (other) Anemone, Anemone nem Trollius Trollius Rhamnus Rhamnus	orosa, Caltha palustris, Delphinium, Hepatica, Pulsatilla, Ranunculaceae, Ranunculaceae undiff., Ranunculus,
Trollius Rhamnus Rhamnus	
Rhamnus Rhamnus	
Ribes Ribes, Ribes rubrum-Typ	ō
Rosaceae Comarum palustre, Drya	s, Dryas octopetala, Filipendula, Filipendula ulmaria, Potentilla, Rosaceae, Rosaceae subf. Maloideae, Rosaceae
undiff., Rubus, Rubus ato	ticus, Rubus chamaemorus, Sanguisorba, Sanguisorba officinalis, Sieversia-type, Sorbus aucuparia, Spiraea
Rubiaceae Galium, Rubiaceae	
Rumex Rumex, Rumex aquatilis,	Rumex undiff., Rumex/Oxyria, Rumex/Oxyria digyna
Salix Salix	
Saxifragaceae (herb) Parnassia, Parnassia pa Saxifraga oppositifolia, S	lustris, Saxifraga, Saxifraga cernua, Saxifraga gramulata-type, Saxifraga hieracifolia, Saxifraga nivalis-type, 'axifraga sp., Saxifraga stellaris-type, Saxifraga tricuspidata, Saxifraga undiff.
Saxifragaceae (undiff.) Saxifragaceae, Saxifraga	ceae undiff.
Scrophulariaceae Castilleja, Lagotis, Pedic	ularis, Scrophulariaceae, Scrophulariaceae undiff.
Thalictrum Thalictrum	
Tilia Tilia	
Tsuga Tsuga, Tsuga canadensis	, Tsuga diversifolia, Tsuga undiff.
Ulmus Ulmus, Ulmus glabra, U	mus minor, Ulmus sp.
Urtica Urtica	
Urticaceae (non-Urtica) Urticaceae	
Valerianaceae Patrinia, Valeriana, Vale	riana capitata, Valeriana officinalis, Valeriana undiff., Valerianaceae, Valerianaceae undiff.
Violaceae Violaceae	

40